
S N Y K R E P O R T

2023 State of  
Open Source
Security
How organizations are striving to
improve supply chain security for
open source software.

Executive Summary
The "2023 State of Open Source Security Report" explores the adoption of security tools,
practices, and technologies and the impact of automation and artificial intelligence (AI) in
software development. The findings are based on a survey of technical employees in the United
States and anonymized data collected from Snyk product usage. Our research found that, while
open source software dominates the technology landscape, security measures and tooling in the
software supply chain are lagging behind the pace of development.  

Despite most organizations following some best practices, there are significant gaps in adopting
security practices and tooling. 62% of survey respondents indicated their organizations apply a
software lifecycle assurance process. Yet many organizations still do not use basic security
tools; for example, 40% do not use foundational supply chain security technologies like software
composition analysis (SCA) and static application security testing (SAST). While transitive
software dependencies (primarily open source packages and libraries) are now recognized as a
key source of invisible security risk in open source software development, 31% of survey
respondents are not monitoring these indirect dependencies.  

The Log4Shell incident has had an impact on security behavior. Nearly two-thirds of
organizations implemented new tooling or new practices or increased the frequency of security
scans in response to Log4Shell. AI and automation are changing the way development teams
build software: 92% of organizations indicated they are using AI tooling, and most are using
automation of software development security practices. That said, over half of developers are
concerned about AI introducing code vulnerabilities. And automation is increasing false positive
vulnerability alerts, with 62% of respondents indicating more than a quarter of all reports were
false positive. Collectively, these findings paint a picture of software development that is rapidly
changing and responding to pressures to improve security but also lagging behind in key areas of
supply chain security practices and processes.

2023 State of Open Source Security 01

Introduction
Today, Open source software dominates the technology landscape thanks to its ability to boost

development speed dramatically. Interconnected and intricate, the open source ecosystem is built on

modularity, sharing, and community interconnection. As a crucial part of modern software development,

open source has understandably become a favorite target of bad actors. Attackers increasingly seek to

exploit vulnerabilities in open source applications, libraries, packages, and tooling. An obvious reason why

these artifacts and systems are such attractive targets is that exploiting a single vulnerability can have an

impact on many victims, as the compromised code is often widely distributed and used – a key element of

the software supply chain.  

In late 2021, the vulnerability was discovered in Log4j — the open source logging library

of applications and open source projects. Beyond that headlining vulnerability, bad actors

continuously attempt to compromise users of package managers, like npm and Maven, and package

repositories like PyPI, which are critical components in the distribution and updating of the broad open

source ecosystem. The interconnectedness is so profound that even disgruntled maintainers of small but

widely-adopted packages can adversely impact large swathes of the public internet. This is precisely what

happened with the incident when an unhappy maintainer pulled down public repositories for a

small JavaScript module that was used for aligning text, causing thousands of applications to cease

functioning normally.  

With these risks in mind, this report analyzes the current state of software supply chain security, focusing

on open source security. Over the past two years, dozens of solutions have emerged, attempting to

address different aspects of software supply chain security. Coding assistants powered by artificial

intelligence have become commonplace and are often cited as both increasing and decreasing the risks of

supply chain attacks. But what progress have we made over the past two years? More specifically, what

progress has been made in securing the open source software supply chain, which accounts for the

majority of software applications running in the world today?  

To answer this question, we extensively surveyed hundreds of technical employees across the United

States and analyzed anonymized data collected from Snyk product usage to paint an accurate picture. As

part of our research, we asked questions about how organizations use AI and automation, how they ship

code, and what types of tools they deploy. Our goal was to gain a broader understanding of the underlying

shifts in software development that are likely shaping the future of supply chain security. We hope you'll

use our findings to help guide your security programs and methodologies in the coming years.

 Log4Shell used by

millions

 left-pad

2023 State of Open Source Security 02

https://snyk.io/blog/log4shell-in-a-nutshell/
https://www.forrester.com/press-newsroom/forrester-attackers-will-likely-exploit-the-log4j-vulnerability-for-months-to-come/
https://www.forrester.com/press-newsroom/forrester-attackers-will-likely-exploit-the-log4j-vulnerability-for-months-to-come/
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/

Open Source & Supply Chain
Security Tools and Processes Not
Keeping Pace with Development

80% of Organizations Ship Code
Daily or Weekly but Only 27% Audit
Continuously

How often do you audit your codebase for

security vulnerabil it ies?

This topic requires a detailed exploration of the software development process through the lens of security. Our survey

found that software supply chain security broadly, and open source security in particular, remains a work in progress. While

the majority of respondents indicate they are following some or many of the best practices, there are considerable lags in

the adoption of both practices and tooling in this regard. It is also important to note that open source is now the dominant

form of developer tooling software. Over 60% of respondents said their organizations have a developer tool stack

comprising 50% or greater open source tools. This is a strong number, considering that many of the most widely used

developer tooling, such as package managers npm, Gradle, and Maven Central, and code repository platforms GitHub and

GitLab, are proprietary or a mixture of open source and proprietary.

2% I don’t know

The more frequently that code is changed, the greater the risks

of supply chain vulnerabilities — unless secure development

best practices are followed. We found that 80% of

organizations are shipping code daily or weekly. This is much

faster than a few years ago and is likely indicative of the shift

towards more modular code architectures built on open

source applications and libraries which require constant

updates due to their complexities and dependency structures.

As ship speed increases, patch speed needs to increase as

well. The faster vulnerabilities are patched, the less risk there

is of an attack. Our survey indicated that 66% of organizations

can remediate critical open source vulnerabilities within a day,

and 27% do so within a few hours. Fast remediation implies

strong security, DevOps, developer agility, and responsiveness

to potential supply chain risks. There remains room for

improvement in code auditing, though; only 27% of

organizations continuously audit code for vulnerabilities.

Another 28% audit code daily, and 29% audit code weekly.

Continuous or high-frequency audits improve safety due to the

increasing incidence of zero-day vulnerabilities.

2023 State of Open Source Security 03

PART ONE

4% Less Frequently

27% Continuously 

through automation

10% Monthly 29%Weekly

27% Daily

2023 State of Open Source Security 04

40% of Organizations Still Don’t Use Key Supply Chain Security
Technologies Like SCA or SAST

Only 40% of Organizations Use Formal Security Rating Tools to
Check Open Source Package Safety

Despite cyber attacks hitting records year over year and an increasing number of attacks focusing on open source code, a high
percentage of responding organizations still don’t use the two most fundamental supply chain security technologies, software
composition analysis (SCA, for open source dependencies) and static application security testing (SAST, for non-public
implementations of open source code and proprietary/first-party code). Cloud native security measures, like configuration checks for
infrastructure as code tools and secrets scanning, are adopted by even fewer.

Checking the security posture of open source packages is critical for maintaining a secure software supply chain. This is even more
important given the rising incidences of package-based attacks, such as person-in-the-middle, dependency confusion, typosquatting,
and malicious code insertion. Automated systems to check that packages follow security best practices, such as Snyk Advisor or
OpenSSF Scorecard, are the most reliable way to analyze the risk of different packages programmatically. These systems, however, are
the least popular methods for checking the safety of open source packages; only 40% of respondents use Snyk Advisor and only 34%
use security scorecards.

The most common method is to use information from the registry or package manager. This is an increasingly useful method as more
package managers deploy “trusted package” rating systems, but at present, this information often does not disclose key security
findings and is rarely programmatic. Other methods used, like looking at ratings, download stats, release frequency, and community
activity, are indirect measures that can be gamed and may not be relevant. Particularly surprising is that only 52% of respondents verify
that all packages have a “responsible disclosures” policy – which should be table stakes for any package to be used.

Which of the following processes does your organization apply?

60%

50%

40%

30%

20%

10%

0%

Software
Composition

Analysis
(SCA)

Static Code Analysis
/ Static Applications

Security Testing
(SAST)

Automated  
Package  

Management

Dependency 
Analysis

License  
Scanning

Secrets  
Management

Configuration

Checks

None of the
above

https://snyk.io/advisor/

2023 State of Open Source Security 05

31% of Respondents Ignore Invisible
Risk of Indirect Dependencies

A critical challenge in supply chain security is monitoring dependencies
of third-party open source packages and libraries. Direct dependencies
are relatively easy to monitor with simple dependency management
tooling. Indirect (transitive) dependencies, which might be buried deep
inside other open source applications, are harder to monitor. Indirect
dependencies are often transient and potentially nested within other
indirect dependencies, often several degrees removed from the direct
dependency package or library. Organizations clearly recognize that
dependency tracking is critical to security, with 67% of organizations
using a tool like Snyk to track direct and transitive dependencies.
Another 25% track direct dependencies only. Tracking both direct and
indirect dependencies is crucial for maintaining a strong overall
application security posture, as demonstrated by Log4Shell.

Tracking indirect dependencies produces a more holistic and accurate
view of the entire attack surface, often surfacing hidden supply chain
security weaknesses. These weaknesses often cannot be easily
remedied due to the fact that nested dependencies are embedded in
open source packages and libraries maintained by parties with at least
one degree of separation from the direct dependency.

Does your company track which open

source l ibraries your applications are

using?

2% Not sure 6% No, we don’t

25.5% We track
direct dependencies

66.8% We track all our
dependencies - direct and
indirect

25% Only Track  
Direct Dependencies

Start your free account

IDE CLI Build system Pre-Commit
Checks

Code
Repository

CI/CD pipeline Don’t know

How do you (or how does your team) check the safety of the open source packages?

60%

50%

40%

30%

20%

10%

0%

I use information
in the registry or

package manager

I use a tool like
Snyk Advisor

I look at repository
ratings or package

downloads statistics

I look at the
frequency of

releases/ commits

I check that the
project has an

active community

I check that the project
has a responsible
disclosure policy

I check the
security scorecard

I don’t check the
safety of open

source packages

Secure your indirect dependencies with Snyk

Snyk Open Source finds and fixes vulnerabilities
in both direct and indirect dependencies.

https://app.snyk.io/login

2023 State of Open Source Security 06

Security Tooling Has Not Fully Shifted Left: Only 40% of
Organizations Have Security Tooling in Their IDE

Shifting security to the left has been a priority for many engineering organizations seeking to proactively improve code security and

reduce vulnerabilities that are inadvertently inserted into code during software development. This improves speed and efficiency in the

SDLC as fewer builds are blocked in pre-deployment testing and routed back to developers to fix. Shifting left also remains unfinished

business as only 40% of respondents indicated that their organization deploys security tooling into IDEs, with an even smaller

percentage using them locally on the command line.

The most common locations for security tooling are in build tools and code repositories, both around 65%. Developers do tend to

invoke their build tools, but usually only when they are at a significant milestone in code development. Security tooling in the IDE or CLI

might be used more frequently than in the build system or code repository during the development process. Locating security tooling in

the build tools or in code repositories is a more traditional setup and is less “shifted left” because those tools are frequently controlled

by other teams, even if they might be used or invoked by developers.

IN YOUR ORGANISATION, WHERE DO DEVELOPERS HAVE SECURITY TOOLS  

INTERGRATED INTO THEIR WORKFLOW?

40% IDE

48% Pre-Commit
Checks

45%  
CI/CD pipeline

30% CLI

4% Don’t know

66% Build system

67% Build system

How Organizations Are Responding:
Big Log4Shell Reaction, but SBOM
Confusion

87% of Respondents Were Impacted by One or More
Supply Chain Security Issues

Between the United States Executive Order on Improving the Nation’s Cybersecurity including a
, additional pending (the Cyber Resilience Act),

and a steady stream of supply chain attacks, the past year has brought increasing pressure on engineering and
security teams to improve software supply chain security broadly and open source security in particular.

 Federal software
bill of materials (SBOM) mandate regulation in the European Union

The responses to the survey indicate that the software supply chain security crisis is real and impacting organizations in a variety of
ways. The strong majority of respondents were impacted by one or more supply chain issues within the past year. In terms of
specific impacts, 53% had to patch one or more vulnerabilities and 61% implemented new tooling and practices for supply chain
security indicating that many are taking action only after the impacts of a supply chain attack affect them directly.

2023 State of Open Source Security 07

PART TWO

How have you or your organization been impacted by an open source supply chain security

vulneralil ity in the past year?

We had to patch one or more  
supply chain vulnerabilities

52.7% 60.9% 53.2% 12.4%
We implemented new tooling and practices
to better handle supply chain vulnerabilities

We trained our development team to
help them better understand supply

chain vulnerabilities

We have not been impacted by open source software supply chain vulnerabilities in the past year

https://snyk.io/blog/understanding-software-supply-chain-security-requirements-cybersecurity-executive-order/
https://snyk.io/blog/understanding-software-supply-chain-security-requirements-cybersecurity-executive-order/
https://www.forrester.com/blogs/the-world-lags-with-sbom-requirements-but-likely-not-for-long/

94% of Organizations Made Significant Changes in Response to
Log4Shell

96% of Organizations Are Taking Specific Actions to Shore
Up Supply Chain Security

This mirrored the overall response to Log4Shell, where clearly organizations are responding with significant changes. In response
to the incident, 63% of respondents said their organizations increased code scan frequency, 59% added new tooling, and 53%
gave dev teams additional training on secure coding practices. Log4Shell also appeared to improve the security hygiene of most
organizations; 58% of respondents said they applied required patches more quickly, motivated by Log4Shell. While the incident
may have caused short-term chaos as organizations frantically sought to identify and patch nested exposures, the longer-term
impact appears to be beneficial: teams have upped their security game at least in part as a direct response to the incident.

Only 4% of respondents said their organization is not doing anything specific to address supply chain security problems.
However, beneath this encouraging top line, the actual adoption of software supply chain security best practices appears
scattered. To this point, only 53% of organizations have a formal supply chain security program. This could be because
software supply chain security is considered a subset of the general security practice, but it does beg the question of whether
supply chain security has yet become a burning issue for organizations (or enough of a burning issue to merit a program-level
view and plan).

In terms of more specific practices, only 42% of organizations are using SBOMs, despite improvements in tooling to make
generating and parsing SBOMs much easier, with widespread recommendations by security practitioners for SBOM adoption.
A higher percentage, 58%, are implementing code signing for attribution of code. The highest percentage, 62%, are adopting a
software lifecycle assurance process (such as SLSA). 55% cited software code audits as part of supply chain security;
however, most were likely undertaking code audits regularly well before software supply chain security became a more
specific call to action and defined area of cybersecurity.

2023 State of Open Source Security 08

How did you organization change its open source supply chain security practices after the Log4J

incident?

Increased code scan frequency

63.4% 52.7% 58.2% 59.4% 6.4%
Gave development teams

additional training
Applied patches more quickly Added new security tooling

None of the above

IF YOUR ORGANISATION USES SBOMs, which tool generates your sbom?

SBOM Confusion: Rapid Growth in Usage but Scattered Correlation

Clearly, the message that SBOMs are a useful tool is getting through to engineering and security teams; 42% of respondents are
already using SBOMs, and 31% plan to adopt them in the near future, forecasting impressive growth. That said, respondents said
they are generating SBOMs from various software development and CI/CD tools, as well as from dedicated supply chain security
systems. This may be due to the relative fragmentation in the SBOM technology space. There remain two dueling standards
(Cyclone, SPDX) with no accepted standards for interoperability. In the survey, respondents indicated that there are many points
of SBOM generation is in the software development and deployment stack.

This likely indicates fragmentation and disconnection in the space – an SBOM Tower of Babel. While SBOMs are primarily
generated by code scanning and security tools (68%), other common systems used to generate SBOMs include build tools (58%)
and CI/CD tools (45%). There is evidence that supply chain security is becoming a separate tool category; 53% of respondents are
using dedicated supply chain security tools to generate SBOMs. In addition, a lack of reliable tooling to analyze SBOMs in a
meaningful, programmatic manner hinders the development of interoperability and reduces the usefulness of the technology.

2023 State of Open Source Security 09

WHICH OF THE FOLLOWING OPEN SOURCE SOFTWARE SUPPLY CHAIN SECURITY PRACTICES HAS

YOUR ORGANISATION ADOPTED?

Implementing a formal
software supply chain

security program

53.2% 62.6% 58.2% 55.9%
Implementing a software

lifecycle security assurance
process (for instance, using

SLSA)

Implementing code signing for
attribution and provenance

(for instance using Sigstore)

Regular audits of our
software supply chain

42.1%
Using software bill of

materials (SBOMs)

4.2%

None of the above

CI/CD tools

45.3% 57.9% 68.1% 52.7% 7.7%

Build tools Code scanning and
security tools

Dedicated supply chain
security tool

None of the above

Automation and AI Injects
Uncertainty, Risk and Opportunity

The AI Paradox: 77% Say AI Tools
Improve Code Security But 59%
Worry AI Tools Will Introduce
More Security Vulnerabilities

As the pace of cybersecurity attacks and updates continue to increase, and the attack surface continues to sprawl, an increasing
number organizations are turning to automation of security processes to keep up and reduce demand on overburdened developers
and AppSec teams. More recently, artificial intelligence for software development has become widely available. How are these shifts
impacting application security and software supply chain security? We attempted to gain insights into these developing areas with
questions on sentiment and real-world impacts of automation and AI. In particular, with regard to automation, we saw significant
impacts in terms of false positive warnings in security alerts.

AI code-generating tools have achieved blanket penetration
and are now deployed by 92% of organizations. 76.5% of
respondents believe that these tools have improved their
organization’s code security. Only 14.9% of respondents said
the AI tools had introduced “a lot” of vulnerabilities into their
code. In contrast, 73% said AI had introduced “very few” or
“a moderate amount” of vulnerabilities into their code. Yet,
59% of respondents said they are concerned that AI tools
will introduce security vulnerabilities into their code, and 50%
are concerned AI will introduce licensing violations into their
code.

2023 State of Open Source Security 10

PART THREE

has the use of ai code suggestion tools, l ike

github copilot, ghostwriter, or chatgpt,

improved your organisations’s code security?

6.8% We are not
using AI code
suggestion tools

5% Not sure

11.6% No

76.5% Yes

AI purpose-built
for security

Learn about
DeepCode AI

Snyk DeepCode AI utilizes multiple AI models trained on security-
specific data with curation from top security researchers to give
you all the power of AI without the drawbacks.

https://snyk.io/solutions/secure-ai-generated-code/
https://snyk.io/solutions/secure-ai-generated-code/

False Positives and Automation Overload: 61% of Respondents
Say Automation Has Increased False Positives

A high percentage of organizations are automating some or all of their security measures in the code pipeline. 64% of organizations
have automated code analysis, 61% have automated software update management, 59% have automated testing (unit, security), and
58% have automated secure coding practices (linters, formatting, etc.). Nearly half have automated container and infrastructure
configuration scanning. Automation of secrets detection lags at only 38%. Respondents indicated that automated security tooling has
considerably increased the rate of false positives in vulnerability reports. Twice as many respondents said security automation had
increased false positives, with 60% stating automation had increased false positives versus 30% saying automation had decreased
false positives.

The percentage of false positives was non-trivial. 62% of respondents said that 25% or more of vulnerability alerts they received were
false positives, and 35% said false positives represented 50% or more of vulnerability alerts. This high rate of false positives likely
contributes to on the surface would seem to be a surprisingly low vulnerability fix rate. 38% of respondents remediate 50% or less of
vulnerabilities reported by their systems. Another 35% remediate 75% or less of vulnerabilities reported by their systems. Surprisingly
10% of respondents remediate less than 25% of vulnerabilities reported in alerts.

2023 State of Open Source Security 11

In a nutshell, developers believe AI is improving their
code security and don’t think it is introducing a lot of
new vulnerabilities. Yet, they remain concerned about AI
introducing vulnerabilities and licensing problems into
their code. Why the disconnect? It’s likely that
engineering and security teams still don’t trust AI tools,
which are novel and remain untested. There also
continues to be media coverage of research finding AI
tools introduce security flaws. Also, considering the
increasing levels of automation, it’s possible that this is
catching and fixing vulnerabilities and flaws
automatically, removing the need for developers to
address them.

how many vulnerabil it ies have been introduced

into your code by ai coding tools?

6.7% Not applicable

2.2% Not sure

3.7% None

13.9 % A lot

40.8% A moderate amount

32.7% Very few

Where Open Source Packages are
Most Exposed

Most Ignored Vulnerabilities:
JavaScript, Java, and Debian
Top the Ranks

There are many ways to analyze and categorize attack surfaces. Considering that most attacks take advantage of existing
vulnerabilities, one way to measure the exposure of attack surface across different open source ecosystems is to look at CVEs which
are the most frequently ignored. This interpretation is not black and white; many issues are likely ignored because they are not relevant
and are edge cases that are not reachable in the vast majority of instances (lodash vulnerabilities in the JavaScript ecosystem are one
example). That said, in aggregate, this information is valuable because it paints a picture of where the weakest links in the supply
chain of published open source software reside.

For this analysis, we considered vulnerabilities that at least 20
organizations had chosen to ignore (based on Snyk data). With
a vast ecosystem of legacy code and a packaging system (.jar
files) that frequently obfuscates vulnerabilities and
dependencies, it’s no surprise that Java has the largest
percentage of ignored vulnerabilities at 42.4%. This is why the
Log4Shell vulnerability still remains unpatched in numerous
organizations even 18 months after it was revealed. JavaScript,
with its numerous packages – many for minute functions and
functionalities – is understandably second, with 30.7% of
ignored vulnerabilities. Debian, the Linux distribution family,
takes a distant third, at 13.6%. If anything, this distribution
understates the attack surface because Java and JavaScript
also dominate not just by count but also in weighting. The top
34 ignored vulnerabilities in terms of the number of
organizations ignoring these vulnerabilities are all Java and
Javascript. The upshot? Java and JavaScript will likely continue
to be the most targeted ecosystems for supply chain attacks
going forwards.

2023 State of Open Source Security 12

PART FOUR

IGNORED VULNS BY ECOSYSTEM/20 OR MORE
APPEARANCES

1.7% dotnet 3.8% golang

6.6% python 13.6% debian

42.4% java 30.7% js

2023 State of Open Source Security 13

Ignored Vulnerability Types:
DDoS, Prototype Pollution and
Deserialization Dominate

The type of vulnerabilities ignored by organizations provides
useful information on attack surface and risks that are accepted,
either consciously or subconsciously. By far, the dominant type
of threat among the CVEs ignored by at least 50 accounts were
flavors of denial of service (DoS). These vulnerabilities made up
31.3% of all ignored vulnerabilities. While serious, DoS attacks
are often proactively mitigated at the CDN or infrastructure level,
so many teams understandably deprioritize these CVEs.
Deserialization of untrusted data made up 14.3% of CVEs
ignored by over 50 accounts. This is a relatively broad class of
vulnerabilities potentially impacting multiple languages. This can
often be the first step in chained or compound attacks, making it
a serious vulnerability. The third most common, prototype
pollution (at 12.5%), mostly impacts the JavaScript community.
This maps to the commensurately wide exposure of JavaScript
as a board attack surface in terms of ignored CVEs.

To be clear, there is obvious tension between our previous
assertion that false positives are a growing problem and ignored
vulnerabilities might indicate a growing attack surface. That
said, there is a high likelihood that the growing complexity of
application composition, software dependencies, and other
elements of triaging vulnerabilities mean not all false positives
are in fact, false positives and that ignored CVEs are likely to
prove fertile ground for attackers seeking weak links in the
software supply chain.

Vuln type (with 50 accounts ignoring)

1.8%

Improper Input Valid

1.8%

Open Redirect

1.8% 
XML External Entity   

1.8%  
Arbitrary File Write

1.8% 
Command Injection  

2.7% 
Improper Verification  

2.7% 
Arbitrary File Write   

2.7% 
Directory Traversal

2.7% 
Remote Code 

7.1% 
Information Exposure  

12.5% 
Prototype Pollution
    

14.3%

Denial of Service

14.3%

Deserialization 

17% 
Regular Expression
 

The Open Source Ecosystem is  
Making Fixes Faster
While there remains considerable room for improvement in the realm of secure coding practices, the ecosystem appears to be making
improvements in reactive security. This is particularly important because the game of application security will always be whack-a-
mole; complex systems constantly changing in a supply chain will always generate new vulnerabilities that attackers will be ever more
motivated to find and exploit. Response time becomes more important as general development velocity continues to increase and the
time of exploit publication to attacks against the exploit continues to decrease.

2023 State of Open Source Security 14

PART FIVE

D
A

Y
S

 T
O

 F
IX

300

200

100

0
2019 2020 2021 2022

Average TTF : Open Source now Faster

Open Source Fixing Vulnerabilities Faster than Proprietary
Software

Since the dawn of open source, the argument has raged about whether open source software is, in fact, more secure than closed
source software. Vulnerabilities are published and in the open, as are the accompanying fixes. So it is possible to track data on time-
to-fix (TTF) using vulnerability databases. We tracked TTF over the past four complete calendar years and found that the average TTF
has steadily increased for proprietary applications and steadily decreased for open source applications since 2019. To be fair, both
genres reduced TTF in 2021, but for the first time since we have tracked this metric, TTF for open source applications fell below TTF
for proprietary applications. This implies the open source ecosystem is improving security response over time and trending towards
providing better security than the closed source world.

2018 2019 2020 2021 2022

2023 State of Open Source Security 15

1500

1000

500

0

Average T ime to F ix by severity; OSS

Better Scanning of Open Source Code Results in Faster Fixes
of Critical Vulnerabilities

TTF as an aggregate is important data. Equally important is TTF by the severity of the vulnerability. For open source, this is

particularly critical because the software supply chain is more nested and complex than for proprietary applications, resulting in

many more hidden or unexpected exposures. After witnessing a major spike in TTF average of critical and high-priority vulnerabilities

in 2019 and 2020, for the past two years it has fallen dramatically. This spike could be an indication that scanning had increased in

those years, shining a light on vulnerabilities that had previously been unseen.

From 2021 to 2022, the average TTF for those two critical designations fell roughly by half – 51% for critical and -49.4% for high-

priority vulnerabilities. There could be a number of explanations for this steady decline, including wider adoption of open source

security tooling such as SCA, more funding and personnel going towards fixing critical open source vulnerabilities, and greater

recognition in open source projects that security is a top priority. Regardless, the signs are good and trending strongly in the right

direction for continued improvement in OSS security.

D
A

Y
S

 T
O

 F
IX

Critical High

Medium Low

2023 State of Open Source Security 16

dotnet js cpp

Most Major Open Source Ecosystems Are Making Fixes Faster

The TTF did vary across open source ecosystems and declined markedly for the majority of major open source ecosystems

tracked by Snyk. The greatest declines in average TTF were in Java and Python, at 50.8% and 43.4%, respectively. All five of the

ecosystems that recorded declines did manage double-digit reductions. The largest total decline in terms of days was in Go and

Python, with Go logging a 147-day reduction in average TTF and Python notching a 115-day reduction. Two ecosystems did

regress. The C and Ruby ecosystems showed a 144.7% and 102.1% increase in average days TTF, with total days increasing by 55

and 49 for the respective ecosystems. The upshot of this data? Open source ecosystems are improving security response times

and, by extension, strengthening open source and supply chain security by shortening the window between publication and

remediation of vulnerabilities.

400

300

200

100

0

java ruby php python go Avg

Ecosystem Avg time to f ix 2021- 2022 2022 - 2023

D
A

Y
S

 T
O

 F
IX

The State of Open Source
Security is Improving but
Remains a WIP
Open standards and open source projects are critical for enhancing supply chain security through transparency and
collaboration. Notably, the consolidates various initiatives, facilitating a unified
approach to best practices, standards, and tools. This fosters a secure environment, mitigating risks associated with supply
chain attacks, and ultimately fostering greater trust in the open-source ecosystem

Over the past few years, technology organizations have made great strides in improving open source and supply chain
security. They have learned the lessons of Log4Shell and made adjustments, including more tooling, more training, and
greater scan frequency. A majority of organizations are adding basic code security to developer tools, including format
checkers and linters. Three out of five organizations are using important security tools like SCA and SAST on a more
frequent basis, and that frequency appears to be increasing. A significant percentage are adopting newer supply chain
security practices, such as SBOMs, and implementing security practices, such as SLSA. Open source now appears more
secure than proprietary applications in the key metric of time-to-fix. The leading open source communities have markedly
reduced TTF on the most serious vulnerabilities. Organizations are adopting promising new technologies like AI-powered
coding assistants, which have the potential to further improve code by enabling developers to build more secure code
through smart suggestions delivered into their existing workflows and tooling.

On the flip side, there remains considerable room for improvement in open source security. Concerningly high percentages of
organizations are still not using foundational security technologies like SCA and SAST. The constant rising tide of
vulnerabilities continues to lead to security backlogs and decisions not to fix vulnerabilities. Part of the challenge here is
false positives, which have increased alongside growing security processes and tooling automation. This is clear evidence
that, while automation allows for much better coverage and detection, it can introduce data quality issues that are
challenging for already stretched security teams to triage and accurately assess. In fact, false positives are reported at such
a high volume that it is highly likely security teams are misclassifying some of these warnings. The sheer volume of CVEs
that are ignored and left unfixed in applications (either by not applying patches or not versioning software) indicates that
organizations are struggling to keep up with the demands of maintaining an airtight supply chain security posture. The
widespread introduction of AI and automation injects additional uncertainty, making it harder to stay abreast, let alone get
ahead, of supply chain security concerns.

Overall, we appear to be in a great period of transition, moving from older approaches to newer methods and technologies.
Open source supply chain security has clearly come a long way, and we are, in the aggregate, more secure as a community
than before. Much progress has been made, but there remains much room for improvement – in the adoption of supply
chain security technologies, new and mature, in reducing the workload and improving prioritization for stressed security
teams, and in making supply chain security a core foundation of the software development lifecycle process.

 Open Source Security Foundation (OpenSSF)

2023 State of Open Source Security 17

C O N C L U S I O N

https://openssf.org/

Methodology and
Respondent Composition
We surveyed 404 respondents from organizations ranging from small companies to very large
multinationals. The largest percentage worked at either small companies with less than 100
employees or at companies with between 100 and 10,000 employees. Respondents were all in
technical disciplines, including software development, infrastructure, operations, and security. Of
the respondents, 38.9% were software developers, 20% were DevOps practitioners, 19.3% were
security professionals, 7.4% worked on platform teams, 9.9% were architects, and 4.5% were in
application security. All respondents were working in the United States. Roughly 25% of
respondents were in traditional technology-centric regions (New York,

Los Angeles, Boston, Seattle, and the San Francisco Bay Area), and 75%

were outside of these regions. Less than 3% were working in the Bay Area,

so respondents were not heavily concentrated in Silicon Valley or nearby

regions. The largest percentage of respondents were in technology

businesses, at 44.5%. For all the specifics of survey respondents, please

check the Appendix. For the directly measured portions of the report,

we analyzed aggregated, anonymized data from

security scans and Snyk product usage. The

coverage of this analysis was from April 2022

 through March 2023 unless otherwise noted.

As a direct measurement, the data is an accurate

representation of supply chain security practices.

APPENDIX

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

